
Journal o f  Statistical Physics, Vol. 22, No. 6, 1980 

Hard-Particle Fluids. 
II. General y-Expansion-Like Descriptions 
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We present a critical discussion of the "y-expans ion"  approach to the 
thermodynamics of hard-particle fluids. First we discuss briefly our original 
formulation for many-component  mixtures of anisotropic species, using the 
usual virial series as a point of departure. Difficulties arising in the case of 
attractive tails and nonaddit ive hard-core interactions are exposed. To 
resolve these problems we suggest a straightforward generalization of the 
expansion quantity y. Instead of y~ =- p~/(1 - ~ = i  voyp~), where Voy and 
p~ are the particle volume and number  density of the 7th species in the 
v-component mixture, we define ya =- p~/(1 ~ ~ = ~  ~y"p~), where the ~b~" 
are determined by optimizing the convergence of the series expressing 
thermodynamic functions in powers of the y~. This procedure provides in 
particular a good description of nonadditive binary mixtures of hard 
spheres with a~2 = 0 and a~2 = (1/2)~z~(1 + A) (A # 0, ~> -- 1 is the usual 
nonaddit ivity parameter.) We present a generalization of the analysis of 
Widom and Rowlinson whereby such systems are shown to be equivalent 
to pure fluids of attracting hard  spheres. Critical point properties of the pure 
fluid are determined via this equivalence, using our y-expansion description 
of the nonaddit ive mixture. Finally, we present the results of y-expansion 
studies of some anisotropic (i.e., orientationally ordered) states of fluids 
composed of asymmetric hard particles. For the case of rectangular parallel- 
epipeds whose allowed orientations are restricted, we can compare our 
description of the isotropic-nematic liquid crystal phase transit ion with 
those obtained earlier by virial expansions and Pad6 approximants.  Finally, 
generalization to continuously allowed orientations is discussed. 
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1. I N T R O D U C T I O N  

As in the preceding paper (hereafter referred to as I), we consider the statis- 
tical thermodynamics of a collection of anisotropic particles of different types 
confined to a volume V at pressure P and temperature T. The system is 
assumed to be in either an isotropic phase or an anisotropic state without 
periodic structure. 

2. M A Y E R - O N S A G E R  CLUSTER T H E O R Y  

Let p~l>(X) be the singlet distribution function associated with molecules 
of the ~th species; O~ = N~/V is the concentration (number density) of this 
species and X describes its position and orientation. Then 

f~(X) = p~>(X)/po~ (1) 

is a dimensionless measure of the distribution of s-type particles in different 
spatial orientations. (Since we confine ourselves to nonperiodic phases, f 
depends only on two or three angles ~ characterizing the orientation of a 
particle-fixed coordinate system in a space-fixed frame. We shall be dealing 
with three-dimensional systems here, but most of our results are applicable 
to any number of dimensions.) Assuming pairwise-additive intermolecular 
forces characterized by the potential u~e and introducing Mayer functions 

f~B(X) = exp[ -  uo,~(X)/kT] - 1 (2) 

we can express the Helmholtz free energy F in  the form of an infinite expansion 
in powers of the densities p~,(1,2~ 

fiF = ~ [p~l'(ln p~i, _ 1 + 3/~ ~ dX~ 
y = l  d 

-- ~I=2 1,1=1 "'" y i ~ "'" �9 i=1 

{ if = N~ /~/~o_ 1 + - ~  f ~ l n f ~ d X + l n p ~  
g = l  

+ ... (3 )  

Here ]~ = 1/kT is the reciprocal temperature times the Boltzmann constant, 
/Lv ~ is the standard chemical potential, Su...~, is the irreducible cluster sum of 
different products off~m (i,j = 1,..., n) associated with a doubly connected 
diagram: 

= (4) 
- ;>j  
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and 

Bvl...v. = "'" Srr..,. i--Ifv, dX,, (n > 1) (5) 
i=1 

is the nth-order virial coefficient, dX a n d f i  are normalized in (3) and (5) so 
that 

f d X  = (6) V 

and 

ffv( X) dX = V (7) 

Since for a given distributionfy, y = 1 .... , v, the coefficients/~r"y, are V 
and N~ independent, the differentiation of (3) with respect to these variables 
yields the following expressions for the pressure and chemical potential: 

fiR = - ~  I{N?,f?},T *'" Byl'"yn ~ Pyf (8) 
~=I 71=i 7n=l i=I 

with 
/~ = 1 

and 
(5a) 

+ ... n + 1 g~v~...v= p,, (9) 
n=l Yl=l Yn=l n i= I 

On the other hand, keeping fixed V and Nv, y = I ..... v, and minimizing 

the free energy with respect to f~ will give the equilibrium distribution of 
molecular orientations: 

V,{Py#a},T 

= fi/,~ = fitx~ ~ + In p~Z)(X.) 

1 
- 2  2 ... 

~=1 yl=I yn=l 

i=1 

The chemical potential 

1 8 F  "X ~ 
/~ = -~ f dX~ 

(1o) 

(lOa) 
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is now the Lagrange undetermined multiplier. Introducing orientationally 
unaveraged virial coefficients (the integration is carried out over r instead of 
X =  r , ~ )  

ff  1 - n S,,...,, l--[ dry, (n > 1) (5b) B~r"~ = V--n! "'" ~=1 

Eq. (10) takes the form 

l n f ~ ( ~ )  =/~(ff~ - fro) _ In p~ 

n=l 71=i ~n=l n ~'"~ 

x I - I  p~,,f~,,(~,,) d,.Q,, (lOb) 
i = 1  

Onsager, C2~ Zwanzig, ~3~ Helfand and Stillinger, (4~ Runnels and Colvin, ~5~ 
Ree and Hoover, (6~ Barker and Henderson, (7~ and many others (8~ have used 
these series to investigate the thermodynamics of pure fluids and fluid 
mixtures composed of spherically symmetric or anisotropic molecules. It is 
now well known that the virial expansion converges slowly and is a poor 
means for investigating dense fluids exhibiting phase transitions. 

3. y-EXPANSION 

Recently we have shown <9) that this situation can be significantly im- 
proved by rearranging series (3) in such a way that the thermodynamic prop- 
erties are expressed as an expansion in powers of functions y~ = y~({Oy}) 
(rather than the densities t~ themselves). 

Consider first the hard-particle (h.p.) potential 

, (+oo,  r - -  I X l  < r t , . )  
u~eP'(X) = (0,  otherwise 

(11) 

where r is the distance between molecules c~ and p, and a~o is an orientationally 
dependent collision diameter 

Writing a 
~r = ( ~  + ao~)/2 ( l la)  

{. 
= | dr (12) 

,It < ao~12 

a Equation (1 la) is strictly satisfied for convex bodies. Otherwise a~B is bigger than the 
arithmetic mean;  in this case relation (1 la) is symbolic and simply emphasizes that  the 
collision diameter can be calculated by geometric considerations. A similar qualification 
applies to the limit of integration in (12). In the next section we consider the example 
of nonadditive hard-particle mixtures. 
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for the molecular volume, and introducing the simple function 

y~ = pal(1 - ~ ; = 1  Vo,p,) (13) 

we can express the free energy in the following form [in analogy with Eq. (3)] : 

/~F= ,=1 ~" N~{ fi/z~~ - 1 + I f  s lny~ 

+ "'" n ~,r",. Y,, (14) 
n=l y =i Yn=l 

Relations between the coefficients/~ and C in (3) and (14) may be obtained by 
expanding (13) in powers of the {p~}, inserting it into (14), and comparing the 
resulting expression term by term with (3). More explicitly, we have 

(222 ) y ~  = p~ 1 + "" Vo~,p~ (15a) 
rn=l Yl=l 7m=l "= 

In y~ = In p6 + "'" Vo~,p~, (15b) 
m=l Yl=I 7m=1 "= 

and thus (n >t 1) 

/~('"~n +i I n+i n+l 

]=1 i=1 
( i~ ] )  

n + l  n - 1  1 

+ 2 ~ m' (n - rn)t C,,...,,~+~ 1--[ v0,,, + C,r..,.+~ (16) 
m=l {i i . . . 'n+ i} " ]=m+9, 

The second summation in the second term of Eq. (16) is carried out over all 
(n + 1)[ permutations of the numbers i~ .... i,+~. 

The expansions for the pressure and the chemical potential follow from 
(14) and are 

n = l  ~1=1 7n=1 i = l  

and 

/3t,~, = p~o + In y~ + -~ f~ lnf~ dX 

+ "- G,1 . . . , .  y , ,  + V o ~ P  (18) 
ri=l ?i=i 7n=l n i=l 

We have shown <9> for a wide variety of molecular shapes that the above 
defined y-expansion converges quite rapidly: keeping as few as three terms 
(i.e., all those through C,B~ ) provides a simple and accurate thermodynamic 
description of isotropic pure fluids even at liquid-like densities. In the case of 
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a hard-sphere (h.s.) potential u~r for example, the three-term truncated 
y-expansion coincides with the pressure obtained from the Percus-Yevick 
(py)(lo) and scaled particle (SP) (11~ theories (see I) which is known to agree 
well with machine experiments. (12~) 

Instead of (13) we can also consider a slightly different function 
V 

with the parameter K chosen to provide still faster convergence of the y- 
expansion. Expressions (16)-(18) still hold if v0y is replaced everywhere by 
Kv0~. For a single-component system K can be determined, for example, by 
requiring that the fourth C coefficient vanish identically: 

C4(K) = B4 - 3KVo/~3 + 3~2Vo/~2 - K3v0 a = 0 (19) 

From the known virial coefficients of a hard-sphere fluid, (6,~a) Eq. (19) gives 

K h.~' = 0.9338 (20) 

This same value of K is appropriate to hard-sphere mixtures. Figure 1 com- 
pares the machine computation data (1~ for several hard-sphere systems 
against the three-term truncated y-expansion (referred to as Ya) with y~ and 
K given by Eqs. (13a) and (20). The Ya is seen to provide an excellent pressure 
equation of state for a pure hard-sphere fluid as well as for hard-sphere mix- 
tures. Note that the value of K determined from Eq. (19) is quite close to unity, 
consistent with the PY-SP equation (Ya with K = 1) being so good. 

The question of convergence for the y-expansion is as difficult as that for 
the virial series; rather than attempt to resolve it in general, we show instead 
how close to each other successive truncations of the y-expansions are. This 
procedure requires that a sufficient number of virial coefficients be known. 
In the case of hard spheres, the first ten B~ are available. ~a) But the uncertain- 
ties in the/~,> a do not permit a meaningful determination of the correspond- 
ing C~ and y~.<9) Nevertheless, rapid convergence of (14) is suggested by the 
following. Requiring that the nth-order term in the y-expansion vanish 
identically, 

C,(K) = ~ (--KVo) ~ n - -  1 / ~ _ , = 0  (19a) 
i=o i 

we obtain 
~h'S'(n = 5) = 1.064 (20a) 

which is very close to unity and the earlier obtained value of Kh'~'(n = 4) = 
0.9338: Y3, Y4, and Y5 for both K ~s" and K h'S" = t are very close to each 
other, and to machine calculation data. 

The case of parallel hard cubes also provides us with a large number of 
viriat coefficients; at present, exact values of the first seven/~ are known/TM 
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- o l  
8 

z ~  o-a/o, i = 5 / 3  
7 - -  ~a/~= =1/3 

6 

r 
P 5 

4 

3 

2 

1 I I i I I ] j, 
0 0.1 0.2 0.3 0.4 0.5 0.6 

p*  

Fig. 1. Pressure equat ion of  state for  three hard-sphere mixtures wi th  addit ive diameters. 
p* =- Volpl + Vo2p2, and  cr2l~ri denotes  the  ra t io  o f  d iameters .  The  solid curves  show ou r  
ca lcula ted  Ya resul ts  (with K = 0.934 nul l i fying C4) a n d  the  circled po in t s  deno te  the  
m a c h i n e  c o m p u t a t i o n  data .  (~2~ 

The K h'~ and the corresponding C~(K ~'~ for n = 4, 5, 6, 7 are displayed in 
Table I. Even though K (and hence C~) oscillates widely as a function of n 
(probably the consequence of the artificial restriction of particle orientations), 
it tends nevertheless to a value near unity. There are, unfortunately, no 
machine simulations for this system against which we can compare our Y~ 
truncations. 

Table I, Coeff ic ients  B~ and C~, for D i f ferent  Values of the Parameter  x, for  
Parallel Hard Cubes 

N 

C ,  lv,o - ~ 

~(n = 4 )  = K(n = 5) = x(n = 6) = x(n = 7) = 
B~/v~ -1 0.5464 1.1567 0.7176 1.0520 

1 1 1 1 1 1 
2 4 3.4536 2.8433 3.2824 2.9480 
3 9 4.9273 1.0845 3.7741 1.6910 
4 3413 0 - 5 . 3 8 9 6  - 2 . 2 3 2 0  - 4 . 9 5 4 2  
5 455/144 - 8 . 0 0 9 5  0 - 7 . 2 1 4 5  - 2 . 1 7 3 1  
6 - 2 0 3 9 / 1 0 8  - 6 . 6 2 3 5  8.9277 0 8.3508 
7 - 169,149,119 6.4547 5.4878 9.7975 0 

§ 3,888,000 
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Another  example  along the above lines is provided by the system of  hard,  
very long and very thin rectangular  parallelepipeds (L x B • B, with L >> B), 
where the first eight virial coefficients are available (a,5~; only those orientat ions 
are allowed in which the (long axis of  the) rod lies along one of  the space-fixed 
coordinate  axes. Table  I !  shows that  K h.~. oscillates with n and tends to a value 
near  0.1. The  y-expansion (as well as the virial series) converges quite fast as 
long as the dimensionless density LYBp is less than  about  1.3 (the limit o f  
stability of  an isotropic phase - - see  below). 

4. GENERALIZED y-EXPANSION 

While the y-expansion provides an excellent description of  the thermo-  
dynamics  of  hard-part icle  fluids, some prob lems  arise when we try to use it 
for  smooth potentials  or  for  potentials  with at tract ing tails on top of  the hard  
cores. In  these cases it is not clear how to define in a unique way the particle 
vo lume v0 and thereby the basic funct ion y. Difficulties are, in fact, not  
exhausted by arbi trariness in the choice of  vo; unphysical  behavior  is pre- 
dicted by the y-expansion for  nonadditive mixtures when interact ion between 
unlike particles tends to zero. 

4.1. At t ract ive  Forces: y.Expansion Diff icult ies 

Consider,  for  example,  a square-well potent ial  

" -I- oO, r < 

uSW(r) = ~ - E ,  ~ < r < )re (21) 

k 0, 2t~ < r 

We set 
vo = ~rr~a[1 + ~a ( e -~  - 1)] (22) 

so that  in the limit o f  high temperatures  (/3 -+  0), vo tends to a hard-core  
volume,  while in the opposi te  case (T---> 0), v0 becomes a difference between 
the hard  core volume ~rr~ 3 and the " w h o l e "  volume ~7r2,% 3 of  the potent ia l  
( including bo th  repulsive and at tractive forces). With  ~ given by (20), ~ the 
choice (22) yields the following critical pa ramete rs  (~ = 1.5): 

iPc = 1.459, #c = 0.244, Pc = 0.103, ~Po/Pc = 0.289 (23) 

in good  agreement  with exper imenta l  data  for  simple fluids. (15~ (Here the 
tilde on a quant i ty  denotes its having been reduced in the usual way to 
dimensionless fo rm:  2P = kT/E, fi = {pTro a, P = {P~rc~a/E). But it turns out  

4 If we instead chose Kv0 to satisfy Eq. (19) for all Twe would find [vo,~l ~ exp(2Be) >> 1 
at low temperature, and thus y ~ exp(-2/~e). Then ]B~[ ~ exp[n(n - 1)BE/2], with the 
same holding for }C=[, and the y-expansion diverges. The choice (20) and (22) does not 
prevent this catastrophe, but at least leads to reasonable critical parameters, while (19) 
does not. 
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that the Maxwell construction in the two-phase region is possible only for a 
narrow range of temperature (T~ > i~ > ii~ o = 1.19); below T 0, Ya exhibits 
unphysical behavior [Ca(SP < lifo) < 0]. In addition, the y-expansion con- 
verges very slowly (if at all) in the neighborhood of the critical point. 

4.2. Nonaddi t iv i ty:  Further  Problems 

Difficulties also appear when the y-expansion is applied to systems whose 
molecules interact through the potential (11 ) but with condition (11 a) violated. 
Consider, for example, a hard-sphere binary mixture with nonadditive 
diameters: 

~12 -- �89 + a2=)(1 + A), A /> - 1 ,  A # 0 ( l lb )  

In the case of positive nonadditivity--in particular, A = 0.2--- Ya represents 
machine calculation well, although not so well as for A = 0.(9) For negative 
A the description of the mixture thermodynamics is worse; use of Ya even 
leads to the conclusion that a system with A < -0 .2  (see Fig. 7 of Ref. 9) 
undergoes a phase separation at high densities (hardly a probable result). In 
the extreme case A = - 1 (for which unlike particles do not interact between 
themselves) no truncation of the y-expansion can represent the true ("ideal 
gas") behavior of such a system: 

F=lxt=~.(A = - 1) = ~ F, (24) 
7 = 1  

4.3. General ized y-Expansion 

4.3.1. Definit ion. These examples point up the need for generaliza- 
tion of the y-expansion. Probably the simplest one comes from replacing the 
basic function (13a) by 

v 4  lgb, 
Expression (14) still holds, if the coefficients Cyl...y" satisfy the following 
relation: 

n+l 

B~I~o+~ - n + l l  j=~l.= ~=1 r + C~...~+1 

n - i  n 

m = l  

11 

x C,,,...,,,~+1 h I ~  4J;:~ (16a) 
/=I kl=l 

(9 = m +i +/i +--. +/~_ i + ;cj) 
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Equations (17) and (18) are also replaced by somewhat more complicated 
ones: 

g=l 71=i 7n=l ~=i 

and 

filX~ = filx~ ~ + lny~ + l f Llnf~dX 

Here 

and 

(C~ = % = 1) (17a) 

.~- ..- -- yl...yn 

~=1 71=1 7~=1 ~ '= 

(lSa) 

1 - ~ = ,  ~by~p~ = p~ y~ (25) 
q'I= 1-E~=,q,  flp, P~y~ 

j = l  ~=1 

(26) 

j = l  i = 1  

Equations (16a)-(18a) reduce to (16)-(18) when ~b~ --~ KVo~ and thus ~o, ~ -+ 1, 
~o~'"~, ~ 1, and ~b~l""~, ~ ~r 

Comparing Eq. (18a) with Eq. (47) of I shows that the scaled particle 
theory can be derived by applying the following procedure: (i) represent ~ 
by a Y3 truncation of expansion (18a); (ii) calculate ~bJ with the help of the 
second virial coefficient [see Eq. (36a) of I]; (iii) write C~ = / ~  - �89 S + ~b/), 
consistent with (16a); (iv) represent the third-order coefficient C~B~ as the 
asymmetric product C~eC~y; (v) take q~S to be identically unity; and (vi) 
replace the last term on the right-hand side of (18a) which reduces to ~vo~P 
when ~bJ -+ vo~--by expression (42) of I. As discussed in I, steps (iv)-(vi) are 
incorrect in general and lead under several important circumstances to 
fundamental inconsistencies. 

The limit mentioned just above suggests that we should set 

which assures 
~bJ = Kv0~ (28) 

Ca .... = ~ (_~b ~), n - i = 0 (19a) 
~.~ ~=1 i 

But, in general, the remaining (n + nV - 1) _ v coefficients of the nth-order 
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terms in (141 cannot be nullified by means of v ( v -  t) parameters ~b~ ~ 
(~,/3 = 1,..., v; ~ # 3t. We can, however, minimize their contribution, using, 
for example, the following procedure. First, define a general set of "mole 
fractions" by 

/2 x~ = y~ y~ (29a1 

Then consider the quantity 

71=i 7~=i ~=i 

as a function of the {x~} and {~b~}. [Note that I~ (~> times ~ = 1 y~/n is the nth- 
order term in expansion (14).] For each set of {~be~ } we maximize I~ "> with 
respect to {x,} (~=1 xy = 1) and define 

f~("~({~b,~}) = maximum I~(n~({~byB; x~}) (2%1 
{x~} 

Finally, we choose the {~J} so as to minimize the sum of theftS>: 

y 

F~ = minimum ~"  f~({$~}) (29d) 
{g'u ~} ~= 1 

4.3.2. Addit ive Binary Hard-Sphere Mixtures.  In the case of a 
binary fluid, for example, the above procedure yields the following simul- 
taneous equations (n = 4, v = 2): 

f~4) ,= maximum]U~B~( 1 _ x~)3 + 3U~B~x~(I _ x~)2 + 3C~Bx 2(1 _ x~)[ 
O~<xa~<l 

(a, 3 = 1 or 2; fi r a) (29e) 
and 

F4 = minimum(f~ 4) + f~)) (29f) 
1 2 (*v *~) 

Thus the (Be =} can be determined as soon as all of the fourth virial coefficients 
are known. Table III presents the parameters C~B~e, $7,  and F4 for two binary 
mixtures whose B~B,o are available from the literature5 ~6~ It is seen that 
$ /  ~ S J  = Kv0~ [the small difference between $ /  and $~  derives most 
probably from ~ 1~ uncertainty in the computed B,B~e and from arbitrari- 
ness in the criterion (29)]. Accordingly, the y-expansion based on (13a) should 
provide a good equation of state for hard-sphere mixtures with additive 
diameters (consistent with our previous discussions--the isotherms with $ /  
listed in Table III are practically indistinguishable from those depicted in 
Fig. 1). 
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Table II1. Parameters of the y-Expansion for Two Hard-Sphere Mixtures with 
Additive Diameters ~ 

7;" 3 7r ~r ~r ~ro3 = 0.5 a ~a~  = 1.25a;-~*~2 = 0.753;-~e,a~ 1 ~,,,~ = 1 . 5 ~ ; ~  = 1 ; ?  ~ ~ - o - = 

~bl 1 3.1517 1.8239 
~b21 0.1012 0.3700 
~bz 2 3.3287 2.0184 
~b., 2 0.1167 0.3940 
Blzll 706.0034 136.8282 
/~ii12 85.510 47.341 
Bii22 7.2915 14.564 
/~i222 0.5530 4.6235 
/~2222 0.03587 1.3789 
Ciii2 0.08012 0.2549 
Cii22 -0.2259 -0.6699 
Ci222 0.00071 - 0.0672 
F4 0.1646 0.5301 

We have optimized convergence of the y-expansion at the n = 4 level (see text). 

4.3.3. N o n a d d i t i v e  B i n a r y  H a r d - S p h e r e  M i x t u r e s .  In the case of  
e x t r e m e  nonaddit ivi ty--for  which unlike particles do not interact at all with 

-each other [A = --1 in Eq. ( l i b ) l - -we  can determine the ~b S parameters 
simply by taking 

~B~ 1 3 =~Krre,  B ( = 0  if a # / 3 )  (30) 

It  follows further from (30) and from the "diagonal i ty"  of  the virial coeffi- 
cients (and hence C) that Eq. (24) is satisfied exactly, removing the difficulty 
mentioned earlier (see Section 4.2) of  the y-expansion. 

But when ai2 # 0 (and A r 0) numerical calculations show that the 
simple rule (30) no longer leads to an adequate equation of state. For  example, 
Y3 with ~b21 = ~bl 2 = 0.3v12 provides an excellent equation of state for the 
binary h.s. mixture crlx = e22 and al2 = 1.2ell (& = 0.2); this system has 
been the subject of  a recent molecular dynamics simulation. (~7~ Thus we turn 
instead to relations (29), which require knowledge of all the fourth virial 
coefficients (in t he  case n = 4). As is clear from the usual diagrammatic 
representations 

- 8 J ~ l ~ z =  3 ( ~ ]  + ~ + ~ ] ) +  ~ ]  (31a) 
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i=porate afua y con ecteddia  am w ,ch equire  

for its evaluation the use of Monte Carlo techniques. 5 For these reasons the 
/~,ero have been computed only for the cases listed in Table III, i.e., for hard 
spheres with additive diameters. 

Fortunately, for a special nonadditive mixture where molecules of one 
component (say 2) do not interact among themselves (~22 = 0), the fourth 
virial coefficients can be determined in a relatively straightforward way. In 
fact it follows from (31) that the only nonvanishing ~no~,da ~,B~ are 

/~nonadd [ �9 1 + A ) 
m ~  ~ 1 , . ~  = ~ V ;  ~ = 0 

# 

~add [ . 1 + A ] = ~ ' ~ 1 ~ \ ~ 1 ,  ~ = ~11 - - - W - ;  ~ 2  = a~1 
J 

and 

Here 

and 

~ = - g  + _= -~(& + &) 

~0 a/: 
Je = 4~r(- 1) ~ r 2 dr [g(r)] 2 

g ( r )  : f ds  H(cr12 - s )H(cr l2  -- is -- rl) 

ar = 2~12, as = minimum((r11,2cr12) 

[H(x) is the unit step function.] Inserting aS) 

g ( r )  = ~r(ch2, 3 - -~r~123 ~ + -l~rS)H(2e12 - r) 

into (33) and performing the r integration, we get 

BnOn~aa[~ . 1 + A 
~ ~1~, ~ = ~ 1  - - - T -  ; ~ = 0 / 

= 0 ,  A~<O 

1 2 8 ( ;  a)2[.( 420 945 567 
=10--3 ~12 1 + ~ x ) 3  ( l + a p  + ( 1 + •  

210 270 35 17 q 
+ ( 1  + A) - 6  (1 + A) 7 + ( 1 +  A) 9 ] '  A>~O 

(32) 

(33) 

(34) 

(35) 

(34a) 

(32a) 

See the Monte Carlo calculations described in Ref. 16, and earlier work cited there. 
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Table IV presents the fourth virial coefficients of several hard-sphere binary 
mixtures with nonadditive diameters. Unfortunately, (2%) and (29f) do not 
always lead to a reasonable set of {~bS}. 

Consider, for example, the extreme case 2~ = oo; this is the familiar 
"penetrable hard sphere" model (0"11 = 0 = 0"22 , 0-12 ~;~ 0 ) .  We have 

G ~  = ~(~d)~(~d  + ~ d  - 8) 

C~22 = B~22 + �89 - ~2 ~ - ~2)  (36) 

G ~  = - ~ ( ~ ) ~ ( g , d  + ~ d  - 8) 

All of these C,'s can be nullified (hence guaranteeing F4 = 0) by setting 

4~ ~ = 4 + (16 + 0.375/~22) 1/~, ~z~ = 4 -T- (16 + 0.375/7~s) ~,~ (37) 

But these results violate the condition 

~ d  = ~ (38) 

which follows from the fact that both components enter symmetrically into 
the y-expansion and the symmetry of the system under consideration. Thus 
we need to apply (29c) and (29d) at the n = 5 level. Fortunately the simplicity 
of the A = oe case allows us to calculate the necessary fifth virial coefficients 
(cq/3= 1 or 2): 

B~.~,, = 0 = B~.r B 
(39) 

1 ~ rr (2~1=r =dr[g(r)] a = 28(41){Z-a~  ~ 
/~. .aBe- 30 = 152o 525 ~6 ~'1=] 

and accordingly 

G ~ e  = ~(G~)3(~e ~ + 3G e - 8) 
(40) 

G~B~ B~B~ ~B~B~G + ~ ( G ~ ) 2 ( 7 ~ I  - 5G B 88) 

The parameters {~J} can then be determined via the F~ criterion with n = 5. 
Table V displays the results, along with the corresponding values of the B's 
and C's. Note that the condition (38) is satisfied and that F5 is indeed quite 
small. 

For  finite ~ the necessary information about the fifth virial coefficients 
is not available and the values of ~21 and ~12 cannot be determined via the 
above-described route. We can, however, proceed instead by simply inter- 
polating between the known limits involving A = c~ and A = 0. [For the 
A = 0 case the ~21, ~12 parameters can be evaluated exactly--see Eq. (68) 
below.] In this way we find 

~ d  = 0 .82815(v~ - ~v~)  
(41) 

~b~ 2 = 0.82815(v~2 - }v~) + v~ 
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Table V. The t~r Parameters of the y-Expansion for a 
Mixture of "Penetrable Hard Spheres" (r = 0, 

~b21 = ~2 0.8282 Cl12 - 1.9797 
/~12 4 CIl12 --0.5438 
/~1122 -20.7238 Cl122 - 17.445 
Bin22 - 19.9924 Cm12 -0.08874 
C12 3.1719 Cn122 --0.2150 

F5 0.1775 

We have optimized convergence at the n = 5 level. 

where 
1 8 and i a (41a) l)ll ~9T(711 ~)12 = = ~T(712 

Although there are no machine calculation data available to check the results 
discussed above, our previous experience with the y-expansion suggests that 
we might expect it to provide a respectable equation of state for nonadditive 
mixtures with ~2~ = 0. This is especially useful since such fluids are equivalent 
(see Ref. 19 and Section 4.3.4) to a system whose particles interact via a 
potential with an attractive tail. 

4.3.4.  W i d o m - R o w l i n s o n  C o r r e s p o n d e n c e .  Consider a v-compo- 
nent mixture whose total intermolecular potential is given by UN(X(~)). Let 
us add to this system a (v + 1)th component - -ca l l  it species 0--whose 
particles do not interact among themselves, but exert instead a potential Uu ~ 
upon the remaining species. The grand canonical partition function for this 
(v + 1)-component system can be written exactly as 

c c  dX(N§162 exp(--fiU~+No) (42) 

where (N = ~ =1 N~) 

No 

UN+No -~ UN + ~ UN~ ; X  (m) (43) 
i0=i 

and 
z~ = exp[/3(/x~ -/x~~ (44) 

Let - l n  WN(X (~) be a potential of  mean force 6 acting on a molecule of  
species 0: 

W~v(X (N>) = f dXo exp[--flUN~ X(N))] (45) 

6 Our definition of - i n  W differs from Hill's (see Ref. 18, pp. 193-195) by an additive 
constant. 
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Then we can write 

N" z~o ... dXNoex p _fl  ~ UNo(X~o) 
NoZ'="= o No ! ~o=I 

= ~ zJ__~o W~ro = exp(Zo WN) (46) 
No=O No! 

Inserting this into (42) yields 

exp[V(flP~+~ - Zo)] 

= E~+I e x p ( -  Vzo) 

= ~ "'" ~ ,x=~-~).] f ' " f  dX(mexp(-/3oN) 
N I = O  N ~ = 0  

= E~ = exp(V/~/~) (47) 
where 

and 

ON = UN +--~- V -  W . - 2  _ X~Bo~ 

2~ = z~ exp ( -  2BoJo) 

(48) 

(49) 

where 
y 

~o = N . ~ ,  N~9o. (52) 

is a constant with dimensions of energy; go, defined by the particular choice 
shown in (52), is a volume. It follows from (47) that P~ +1 - e/~o is the 
pressure/s of a v-component mixture whose molecules interact via potential 
0N which incorporates, in addition to the total potential Uu, a nonpairwise- 
additive interaction 

U}~il(X~m) ,[. V - W~(x(m) ] = = N (53) 
Vo 

(Obviously, in the special case where Uu ~ is a cutoff potential and UN repul- 
sions prohibit more than two molecules from interacting simultaneously with 
a 0 particle, U} ~i~ will be pairwise additive even if Uzfl itself is not.) 

if /~o~ = ~ dXo, {1 - exp[-flUl~ X~)]} (50) 

is the second virial coefficient. 
Since the activity Zo (i.e., the concentration po) is arbitrary, we can set it 

proportional to the reciprocal temperature 

Zo = ,fl/~o (51) 
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Equations (49) and (51) determine the activity (chemical potential) of the 
~th component. Thus the (v + 1)-component mixture with total potential 
Uu+u0 [Eq. (43)] is thermodynamically equivalent to a v-component mixture 
with potential ON [Eq. (48)]. This equivalence is established explicitly by the 
following equalities: 

E 

P~+~ : A + - (54) 
VO 

I E 
z-7 k~-; = r (55) 

0z~ - z~ ae,  Oz--7 + e~- Oz~ = #~' 

(56) 

(57) Pv+1 ---- Po ---- zT---o V 
y = l  

and  
n 

/3~= =/3/2= + 2 ~ / %  (58) 

Here/~ is the internal energy and, as before, the caret on properties refers to 
their values for a v-component system with interaction U} ail added to the 
original Uu. 

In addition to these thermodynamic quantities, it is possible to show 
further that the microscopic structure of the v-component system also follows 
from the (v + 1)-component system. Introducing the n-particle distribution 
function 

"~~176 ~'~176 .., ~ v N ] 
l(X (tO) Pv+ 

V+I NO= 0 NI=~I N,,=n~/ _ 

and inserting (46) into its integrand leads to 

p~+, l(x~.,) = ~ ... (N~ - k )  i] 
N1=n I N V = ~  v 

= #(~")(X (")) (60) 

[Here the n -= ~ = z  n~ molecules do not include any of the 0 species (no = 0).] 
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For  our present  purposes we take v = 1, and UN and UN ~ to be a sum of  
hard-sphere potentials with diameters  al~ and %2 - �89 + zX): recall that  
%2 = 0. (Now it is convenient  to write 2 instead of  0 for  the added species.) 
I t  follows f rom the definition (45) of  W~ tha t  the difference V - WN is here 
the total  volume forbidden to a molecule of  species 2, and 

V -  WN ~< 2N/~12 = N~o (61) 

thereby guaranteeing tha t  the r ight-hand side of  (53) is nonposit ive (U~ ~n <~ 
0). 

This same quant i ty  vanishes identically when A ~< 0, and thus 

/~ = <U~n> = 0 (62) 

Then f rom (54)-(58) we can write 

fie P2 

Vo 1 - 2/hB12 

2/~12p~ 
f ~ ( o ~ ,  02) = f~..~.(o~) + 1 - 2 m ~  

P2 

(63) 

(64) 

(65) 

(66) 

ft~2(pl, P2) = In zz + fizz ~ = P/~2 ~ + In 
1 - 2pl/~12 

p2 fem~xt~ro(P~, P2) -- fe~.s.(pz) + 
1 - 2thB12 

and thus 

ffm~xturo(Ol, P2) = f f~.s .(p~) + N2 f/~2 ~ - 1 + In  1 - 2pl /~  

Here  Fmixtu~ and Fh. s are the Helmhol tz  free energies of  the hard-sphere 
mixture (a~l; a~2 = �89 + A); a22 = 0) and of  the pure  hard-sphere fluid 
( an ) - - r eca l l  that  U~ "n = 0. Compar ing  this last result with Eq. (14) shows 
tha t  in this case we can put  

~11 1 S 4, 3 ~I~, ~,~ o, ~ = 2~2 ~/ 0 (68) ~--_ ~--_ ~TG12 ~ ---~ 

and 

C2y~...y, -= 0, 7~ = 1 or 2; n /> 1 (69) 

Finally, it follows f rom (16a) that  the corresponding virial coefficients are 

~,~...~, = __I lq ~,~, = ~ 1  ( ~ 2 ) " 1 - [  ~ ,  (70) 
n + l ~ =  1 n + l  ~=~ 

(8~ is the usual Kronecker  delta function). 
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For  positive nonaddit ivi ty  (A > 0), the si tuation is more  interesting. 
Here  the two-componen t  hard-sphere mixture with nonaddi t ive diameters  is 
equivalent  (in the above-descr ibed sense) to a one-componen t  system whose 
molecules are "a t t r ac t ing  hard  spheres."  More  explicitly, their  pai r  potent ial  
is 

+0% r < or11 = 2a12/(1 + A) 

1 _  r ] 2 / 2 +  r 
- 2 ~ !  \ 

u(r) = 
( 1 - r / 2 ~ 1 2  ~2( 2+r/2a12 

= - E m , l  - 1/(1 + -E)] \ 2  + 1 / 0  T A ) J '  ezl < r < 2e12 

0 ,  r > 2cri2 (71) 

where e m =  U(~11+) is the depth of  the at t ract ion well. Fo r  small enough 

nonaddit ivi ty  (A < 2 /V~  -- 1 ~ 0.155) the U} an defined by (53) becomes a 
sum of  the u(r~j) in (71); as ment ioned  earlier, however,  it is in general non-  
pairwise-additive.  

The the rmodynamics  of  the fluid with " t r i ang le" -wel l  potential  (53) is 
described completely  by the correspondences (54)-(58) and the y-expansion 
(14). The relevant  r  pa ramete rs  for  the y-expansion are given by (28) and 
(41); Table  VI  presents the critical pa ramete rs  of  a fluid of  these at tract ing 
hard  spheres as calculated f rom Y3 for  different values of  the tail length 
[(2~12/a11) - 1 = A]. To  determine a "physica l ly  r easonab le"  choice of  A, 
we can compare  the second virial coefficient for  the potent ial  (71), 

B g  ~) = ~r~71 1 - 3(1 + A) a t 2 dt {exp[fie(7~)(1 - t)2(2 + t)] - 1} 
/ ( l+&)  

(72a) 
with tha t  for  the square-well  (sw) potent ia l  (21), 

B~W z a = ~ r ~ { 1  - (h a - 1)[exp(fie ~w) - 1]} (72b) 

Fo r  e (7~ ~ e ~w we find that  B(2 TM recovers the tempera ture  dependence of  B sw 
for  1 / f i e = k T / e  > 1 if A ~ A : A  ~ 1.42 for  ;~--- 1.5 and A ~ 1,82 for  
h = 1.75. The  data  listed in Table VI indicate tha t  the systems with these 

Table Vl. The Y3 Critical Parameters of a Fluid Attract ing Hard Spheres r 

A ~P/p v12P/* v12p kT/~m (~ - ~o) /~  va2E/eV 

0.256 0.0117 0.1294 0.353 -- 1.367 --0.0501 
5 0.270 0.0112 0.126 0.521 -- 1.258 --0.046 

5/3 0.291 0.0096 0.115 0.620 --1.030 --0.034 
1 0.348 0.0069 0.098 0.631 --0.705 -0.200 

= See text for determination of ~bB ~ and discussion of the nonadditivity parameter A. 



730 Boris Barboy and Wi l l iam M. Gelbart  

Table VII .  The Ya Crit ical  Parameters of the Gaussian Model  Fluid ~ 

flP/o (~/~ra)3e/e (~/~m)sp kT/e (t~ - tz~ (~/~rcr)3E/eV 

0.277 0.1018 0.12 2.925 -10.140 -0.3730 

~bi 1 = @22 = 0 and ~b21 = ~b( = 0.34615(~/7re) a. 

values of A (i.e., A ~ 5/5) are the best in describing real examples of simple 
fluids. (15~ Our Ya results for the penetrable hard-sphere model (A ~ oo) can 
be compared with those found in the mean field approximation, (~9~ fiP/o = 
0.282, v12p = 0.125, kT/e  = 0.368, and v~2P/e = 0.0130; and in the Percus- 
Yevick approximation, (2~ vz2p = 0.140, kT/e  = 0.330, v~2E/eV = -0.0605, 
and (ix - t~o)/e = -0.634.  

Helfand and Stillinger (4> and Melnyk et al. (2~ have considered the 
"Gauss ian"  model according to which UN =- 0 and 

N 

U~ ~ = - k T  ~ ln[1 - exp(-rgJcr2)] (73) 
i = 1  

where ro~ is the distance between the test particle of the 2 species and the ith 
molecule of species 1. The critical parameters for this system (with virial 
coefficients from Ref. 4 and n = 5 optimization 7) are displayed in Table VII. 

Note that either of the above mixtures can be used as a reference system 
for perturbation calculations on fluids of molecules interacting via potentials 
including both repulsions and attractions. The required radiat distribution 
function ~ of the reference system is given by Eq. (60) and the corresponding 
y-expansion of g~z in the binary mixture. In general we have 

g ,B(X)-  O("~(X) = exp[-/3u,e(X)](1 + ~ ~ ... ~ D r v . . , , ( X ) ~ y r ,  ) ~  
PaPB n = i ez = i en = 1 i = I 

(74a) 

where the coefficients D~...r, are related to the coefficients G ~B~...r. in the virial 
expansion 

g~B(X) = exp[-fiu~B(X)] 1 + ... G,r..,,(X) p,~ 
n=l 71=1 ?n=l i=l 

via an equation similar to (16a): 

In = 1 { ~ l , . . ' , i n }  n - -  m ~  < l l , ' " , lm)  0 
( 2 m =  ~ ~j = .  _ m) 

n -  1 ~e (74c) 
y = l  l O = 1  

(p=m+ll  + . . . + l t _ l  +kj) 

7 Equations (36) and (37) hold here as well and thus n must be equal to or greater than 5. 



Hard-Particle Fluids. II. General y-Expansion-Like Descriptions 731 

4.3.5. Anisotropic  Fluids. In the previous sections we have concen- 
trated on systems of spherically symmetric particles. More important (and 
problematic) is the application of the y-expansion to fluids of asymmetric 
molecules. In this section we consider anisotropic phases of liquid-crystal- 
forming systems composed of asymmetric particles. Unfortunately, no com- 
puter simulation to date has succeeded in seeing the isotropic-+ nematic 
transition in a three-dimensional system of hard particles whose positions and 
orientations are unrestricted. (21) We are therefore not able to compare our 
y-expansion results with "experiment." 

(a) Genera/Formulation. For our present purposes Eq. (14) for the 
free energy can be written in the following, more convenient form: 

f l F =  ~=1 ~ N ~ I f i / ~ ~  1 + ff~Inf~d~+lny~ 
+ "'" n "'" C ~ w ' r J ~ d ~ I ~ Y r ' f " d ~ Y ~  (14a) 

n=l ~i=i yn=l {=I 

Here the coefficients C~1._~, (dependent on orientational coordinates) are 
given by Eq. (16a) but with the averaged quantities/~1...7, and CTr..~, replaced 
by the unaveraged Bw..~, [defined by Eq. (5b)] and Cyl...y" . Recall thatf~ is a 
function of particle orientation g~, but not of position r~. Minimizing F with 
respect to fT(g~y) at given volume, temperature, and densities yields 

fl/z~ = fi/z~ ~ + In y~ + lnf~(g~) 

){ f f n=1 yl=l ?n=l 

• 

i = l  

f f  } 1 + 2P=~9~' ... G,r . . , , (g~ ' a,~ .... ,g~,,)I-Ify,(g~,,)dg~,, (75) 
+ n i=i 

For simplicity we have assumed in (75) that the coefficients ee ~ are indepen- 
dent of the distributionsf~ (7 = 1 ..... v). Note further that all but the third and 
last terms in (75) are independent of  gl~--this variable enters the equation 
only through the functional dependence of  f~ and C~n...~ . Therefore, to 
calculate the equilibrium distribution of orientations [f~(12~)], we need to 
know " o n l y "  the angle dependence of the C~...~, (i.e., of the virial coefficients 
B~...~.). 

Although formal expressions for B~(12) [and thereby C~B(12)] are known 
for arbitrary shaped convex bodies, (~2) explicit, analytical results are available 
at present only for hard right-circular cylinders and spherocylinders (m and 
hard ellipsoids of revolution. (~3) Equations (30)-(31) in the preceding paper 
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provide B~e(E~ ) for a smooth potential having these shapes. For B~B ~ and all 
higher order virial coefficients (or even for B~e in the case of other potentials) 
no analytical or formal expressions have been derived; see, however, Straley~2~> 
for an approximate estimation of the angle-dependent Ba for hard cylinders. 

(b) Restricted Molecular Orientations. To simplify things, Zwanzig (8~ 
considered systems whose molecules are artificially restricted to a few orienta- 
tions. If, for example, we investigate a fluid of rectangular paralMepipeds 
(L x B x W), we allow only the six orientations for which the principal axes 
of the particles are coincident with those of a space-fixed coordinate system. 
In Table VIII we have collected the results (see Appendix) for the second and 
third virial coefficients of this system. Equation (16), with B, and C~ replaced 
by the corresponding unaveraged quantities, allows us to obtain C2(s and 
C~(g~12, g~la). Inserting these values into (75), we find six coupled, nonlinear 
equations for the distribution function f(g~). The chemical potential (or 
density, via y) can be eliminated by use of Eq. (18), or, equivalently, by the 
normalization (7) and the fact that t~ is g~-independent. This gives the 
orientational distribution as a function of y (density O) or ~. Note that the 
temperature is not involved since we are dealing with interparticle repulsions 
which are either infinite or zero. Furthermore, (75) is nonlinear integral 
equation for f(g~) only in the case of continuous orientation. For our present 
restriction to six orientations, (75) turns into a nonlinear algebraic equation 
where integrations have been replaced by summations. The six possible 
Euler-angle triplets (c~,/7, 7) lead then to six coupled equations whose solution 
determines the equilibrium distribution of parallelepipeds among the six 
allowed orientations. 

Numerical calculations based on Y2 and Y3 show that there exists a 
special density p*, depending on the ratios L / W  and B/W, such that for 
p < p* the only real solution of (75) describes a uniform orientational 
distribution. For higher densities (p > p*) more solutions appear; we choose 
the nonuniform one which minimizes the free energy. This means that an 
anisotropic state of the fluid is stable at high enough densities. (For L r 
B r W there are in fact two special densities, p* and p**, corresponding to 
the thresholds for uniaxial and biaxial distributions--we shall be concerned 
here only with the uniaxial solutions for f )  Using the thermodynamic relations 
Piso = Paniso and t~i~o = t~a~l~o, we have located the first-order phase transition 
and calculated the differences in p (and f )  between the coexisting isotropic and 
anisotropic phases. Some of these results have already been published. C25~ 
We have shown, in particular, that deviations (L r B 4: W)f rom axial 
symmetry can be crucial in explaining the dramatic weakness (very small Ap, 
A f, etc.) observed for the isotropic-nematic transition. 

Two basic questions must now be confronted: (1) How quickly does the 
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~ E  

2,0 ~ 
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(a )  

L 2 B#P 
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I i 
1,5 i 
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Y7 vs v6'u 

Y, i- 
1.0 1.5 2 .0  2.5 

( b )  

Fig. 2. Pressure vs density curves for ]I2- I18 levels of description of a fluid of very long 
and very thin rods (L >> B) whose long axes can point only along the spaced-fixed X, IF, 
or Z directions. (a) The isotropic phase; (b) the isotropic-nematic phase transition tie 
lines and the anisotropic phase. 

y-expansion converge in the anisotropic phase? (2) What is the effect of 
restricting molecular orientations on the thermodynamics predicted by the 
truncated y-expansions ? 

In addressing the first problem we can consider two limiting cases: hard 
cubes (L = B = W) and hard, very long and very thin rods (L >> B = W). 
Although both cases are problematic (see later discussion), a large number of 
virial coefficients are available--seven for the cubes <1~) and eight for the 
rods. (5'26),8 Whereas the fluid of  cubes can only exhibit isotropic phases, the 
fluid of rods is expected to show nonuniform (e.g., nematic) states at suffi- 
ciently high density. 

In Tables I, II, and IX the virial coefficients Bm,.,~ and y-expansion coeffi- 
cients Cm,,,~ are listed for these two systems. Since we have assumed that the 
parameter ~b in (13b) [or K in (13a)] is independent of  the orientational distri- 
bution, we have calculated its value from consideration of the isotropic phase. 
The subscripts m, n, and k denote the number of particles pointed along the 
space-fixed X, Y, and Z axes. The averaged virial coefficients are calculated 
for an isotropic phase: 

/~ = (1/3 ~) ~ ~ B,,k,~_,_~ = (1/3') ~ a,,m,_~_~B,,m~_,_e 
n = 0  / c = 0  ~>_.n~tc>l~-n- /~O 

From Fig. 2a we see that the y-expansion converges quickly throughout the 
density range of the isotropic phase: in this region the pressure should be well 
represented by Y3- A simple interpolation between the cube (L = B = W) 

8 Runnels and Colvin (5~ have supplemented the calculations of Zwanzig (3~ by computing 
the eighth virial coefficient for very long, very thin rods. 
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Table IX. Coefficients Bm,n,~ and Cm,n,/c for a Long, Thin, Hard-Rod Fluid 

i m n k B . . . .  ~ C~,~,~(~c = l /9 )  a . . . .  k 

1 1 0 0 1 1 3 
2 1 1 0 1 0.88889 6 

2 0 0 0 - 0 . 1 1 1 1 1  3 

3 1 1 1 0 - 0 . 2 0 9 8 8  6 

2 1 0 0 --0.13580 18 

3 0 0 0 0.12346 • 10 -1 3 

4 2 1 1 0 0.29492 x 10 -1 36 

2 2 0 - 0 . 2 9 6 3 0  - 0 . 2 7 2 9 8  18 

3 1 0 0 0.17147 • 10 -1 24 

4 0 0 0 - 0 . 1 3 7 1 7  • 10 -2 ~ 

5 2 2 1 0 0.22100 x 10 -1 90 

3 1 1 0 - 0 . 3 6 8 8 5  • 10 -2 60 

3 2 0 - 0 . 6 6 6 6 7  x 10 -1 0.92059 • 10 -2 60 

4 1 0 0 - 0 . 2 0 4 2 4  x 10 -2 30 

5 0 0 0 0.15242 z 10 -3 3 

6 2 2 2 0 - 0 . 6 7 2 3 2  x 10 -2 90 

3 2 1 0 - 0 . 6 0 1 1 9  x 10 -3 360 

3 3 0 0.50074 x 10 -1 0.65603 x 10 -1 60 

4 1 1 0 0.44031 x 10 -3 90 

4 2 0 - 0 . 1 4 2 2 2  x 10 -1 - 0 . 3 7 7 3 3  x 10 -2 90 

5 1 0 0 0.23709 x 10 -a  36 

6 0 0 0 - 0 . 1 6 9 3 5  x 10 -4 3 

7 3 2 2 0 0.37445 x 10 -3 630 

3 3 1 0 - 0 . 6 2 7 6 7  x 10 -2 420 

4 2 1 0 0.33060 x 10 -3 630 

4 3 0 0.25848 x 10 -1 0.43783 x 10 -2 210 

5 1 1 0 - 0 . 5 1 3 4 3  x 10 -4 126 

5 2 0 - 0 . 2 8 2 1 9  x 10 -2 0.34774 x 10 -3 126 

6 1 0 0 - 0 . 2 7 1 5 0  x 10 -4 42 

7 0 0 0 0.18817 x 10 -5 3 

8 3 3 2 0 0.59186 x 10 -3 1680 

4 4 0 - 0 . 2 1 7 1 7  x 10 -2 - 0 . 9 0 4 6 9  x 10 -4 210 

4 3 1 0 - 0 . 4 2 2 4 1  x 10 -3 1680 

4 2 2 0 - 0 . 1 4 5 0 0  x 10 -1 1260 

5 3 0 0.88858 x 10 -2 - 0 . 3 0 5 4 1  x 10 -4 336 

5 2 1 0 0.14206 x 10 -2 1008 

6 2 0 - 0 . 5 1 8 3 0  x 10 -3 0.59064 x 10 -5 168 

6 1 1 0 - 0 . 3 7 6 6 1  x 10 -4 168 

7 1 0 0 0.30839 x 10 -5 48 

8 0 0 0 - 0 . 2 0 9 0 8  x 10 -6 3 
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Table X. Parameters of the Isotropic-Nematic Phase Transition Obtained 
from Different Levels of Approximate Description 

Isotropic density Mesophase density 
Approximation ~ ~PL2B piL2B p,~L2B 

B2 2.314 1.258 1.916 0.915 
B~ 2.494 1.419 2.138 0.934 
B5 2.563 1.513 2.139 0.909 
B7 2.494 1.443 1.783 0.701 
B8 2.500 1.443 1.899 0.798 

[2, 3] Pad6 2.514 1.45 1.92 0.81 
[3, 3] Pad6 2.512 1.45 1.95 0.84 
[3, 4] Pad6 2.510 1.45 1.93 0.82 

Y2 2.016 1.064 2.038 0.983 
Y3 2.351 1.311 1.883 0.870 
Y4 2.370 1.508 1.513 0.057 
Y5 2.387 1.414 1.419 0.072 
II6 2.479 1.417 1.848 0.774 
Y7 2.502 1.438 1.972 0.849 
118 2.515 1.459 1.985 0.850 

See text. 

and long-rod (L >> B = W) limits, in fact, gives ~b ~ L B  2 = v o for L = 3B, 
i.e., ~ ~ 1, in agreement with the value of unity used in our earlier work. 

The data listed in Table X show the parameters characterizing the iso- 
tropic-nematic phase transition in the long-rod limit, obtained from different 
truncations of the virial ~3'5) and Y- (present results) expansions and f rom 
various Pads approximants. ~) Note that both Y~ and Y5 fail to give a proper 
account of  the orientational ordering (see Table X and Fig. 2b); similarly, 
Zwanzig ~3) has shown that B6 fails to show a phase transition (Table X). 
(These anomalies are most probably an artifact of having restricted the particle 
orientations.) Figure 2b displays the pressure vs density curves, and the phase 
transition tie lines, for Y2 through Y8 levels of description. The Y3 appears 
to err at very high densities in the ordered state, but provides a qualitatively 
good accounting of the phase transition (i.e., of  the pressure and coexisting 
densities); Y6, YT, and Y8 are virtually identical throughout the entire range 
of density. 

4.4.  C o n t i n u o u s  O r i e n t a t i o n s  

To resolve (at least partly) the second problem of the Zwanzig model we 
can compare results of Lasher's ~27) scaled-particle treatment of hard sphero- 
cylinders (of diameter d and total length 1 + d)--which can in fact be 
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0.9-0 .8  ~ "  ~'~i~ ~, x '~  ////'~k/P2)3 3 

0s ~0.6 . / /  2 

0.~ -0 ~ I  ~ ~ -I 
P~ 

OA I 1:>3 
1.0 rO I00  I /d 

Fig. 3. Results for order parameter (P2), nematic density pa, and pressure P at the 
isotropic-nematic phase transition in a fluid of spherocylindrical rods with different 
length-to-width ratios. The subscript 3 refers to our Y~ calculations in which only three 
orientations are allowed; the subscript oo refers to Y2 with continuously allowed orien- 
tations. (2v 

shown (~ to be identical to Y2 with continuous ~ - - a g a i n s t  our Y~ calculations 
for restricted orientations. Figure 3 displays Lasher's and our phase-transition 
properties for different length-to-width ratios L / B  (B  = W ) ,  9 

12(t/d) B - 1 
=(2 + 3l/d) L 

I t  is seen that our I12 results for ~ = ( / 2 )  (Pz is the second Legendre poly- 
nomial) agree closely with Lasher's in the range 1 < l id < 3, corresponding 
to the shapes of  real liquid-crystal-forming molecules. (25) But comparison of P 
or p values in this region shows large discrepancies. Furthermore, it can easily 
be shown that (P4) always exceeds (P2) in the restricted orientation case, 
whereas measured values of  (P4) are often small and even negative. (2s) 
Quantitative and detailed description of  the phase transition clearly requires 
treating ~ as a continuous variable. But then we are confronted with the 
impossibility of  obtaining analytical expressions for B2(~) and Ba(~, ~ ' ) .  
One solution would be to pursue the suggestion of Straley's, (29) according to 
which the constituent particles (axially symmetric, say), instead of being con- 
strained to point along X,  Y, or Z, are allowed to point into the faces of  a 
dodecahedron (six orientations), or an icosahedron (ten orientations), etc. 
An alternative approach involves allowing for continuous quantities from the 

9 The expression follows from the equality B~P'cYI(I, d) = Bre~ ~ , B). 
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outset, and then truncating various series expansions for the relevant angle- 
dependent quantities. 

More explicitly, suppose we expand B2(~) and B3(~, ~ ' )  in their 
Fourier series: 

and 

B2 = B2(afl7) = ~ b,~,~ exp[i(m~ + nfi + k7)] 
m ,  ,l~ 

(76) 

B3 = ~ ~ b,.,~k'.~: expii(m~ + nfi + k 7 + izo:' + vfl' + KT')] (77) 

Inserting (76) and (77) into (75) yields the Fourier expansion of the distribu- 
tion function f(~2). Since we are interested in low-symmetry shapes charac- 
terized by, say, ellipsoids or rectangular paralMepipeds all of whose axes are 
different, it is appropriate to consider the general case of d2~ molecular 
symmetry. In this case the coefficients B~(c~{37) and C2(cq37) must be invariant 
with respect to the following angle transformations: 

a--~a +p~r 

fi --> p(28~o - 1) + l~r (78) 

y ~ y(28po3zo - 28vo + 1) + fir 

where p, 1, j = 0, + 1. An additional symmetry relation follows from the fact 
that the coordinate frame can be tied to either of the two particles; thus 

g~12 --> $221 or (a ->  -7,/3--> -f i ,  7 --> - ~ } (79) 

Requiring that (76) be invariant under the transformations (78) and (79) leads 
to stringent conditions on the bran ~ and hence to the following for B2: 

B2 = ~ b~n~ cos 2ma cos 2nil cos 2k7, b~n~ = b~,~,~ (76a) 
m,~,h; 

Determination of the coefficients b~n~ for an arbitrary molecular (hard 
core) shape constitutes the original problem of obtaining an explicit analytical 
expression for B2. Thus we choose instead to approximate B2 by dropping in 
(76a) all terms with m, n, or k greater than 1. Following Straley, (3~ we can 
then calculate the coefficients of the remaining terms by requiring that the 
truncated (m ~< 1, n ~< 1, k ~< 1) expansion recover the exact values of B2 
listed in Table VIII for the special orientations. In this way we find (see 
Appendix) that B2 must have the form 

3 

B~(~,) = ~ V~F, (80) 
i = 0  
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where 

3Vo= 
3V~= 

4V2= 

2V3= 
and 

Fo= 
F~= 
F~= 
F3= 

(L + B)(B + W ) ( W  + L) + 4 L B W  

3 L B W  + �89 ~ + W ~) - B(L  2 + W 2) - rV(L2 + B2) 

(B - W ) ( B W  - L ~) 

- L ( B -  ~ 

(81) 

1 

P2(cos/3) 

(sin 2/3)(cos 2c~ + cos 2),) 

(1 + cos 2/3) cos 2c~ cos 2y 

(82) 

[A similar equation for B2 has been suggested by Straley, (3m who starts with 
an expansion in Wigner rotation functions instead of a Fourier series. He 
finds 4 L B W  instead of 3 L B W  in the second of Eqs. (81) and - V2 instead of 
+ V2; also, his F3 includes an extra term which is not invariant under the 
transformations (78).] 

For the third virial coefficient, B a ( ~ 2 ~ a ) ,  transformation (79) must be 
replaced by a more complicated set of angle relations involving the full group 
of 1 +-+ 2 ~ 3 permutations. With conditions (78) these symmetry constraints 
reduce the Fourier expansion (77) to a fairly straightforward series whose 
(rn ~< 1, n ~< 1 .... ) truncation can be forced to yield the Ba values listed in 
Table VIII. We then construct C2($~2) and Ca(~212~a) and use them in Eq. 
(75) to provide a Y3-1evel theory for the continuous orientation case. The 
corresponding integral equations must be solved by truncated Fourier series 
representations of the solution, or by related methods. 

A P P E N D I X  

A.1. Second Virial Coeff ic ient  of Rectangular Parallelepipeds 

Let us place the origin of our space-fixed Cartesian coordinate system 
at a vertex of the first parallelepiped, and take the three edges meeting at that 
vertex to be the coordinate axes. Suppose now that at least one principal axis of 
the second paralMepiped is parallel to one of the coordinate axes, so that the 
cross section--cut by a plane perpendicular to this axis--of the two parallele- 
pipeds in contact is comprised of two rectangles touching each other (see 
Fig. 4a). As rectangle 2 moves around rectangle 1 (the two parallelepipeds 
remain in contact with one another and keep fixed their relative orientation), 
the center of particle 2 circumscribes the figure shown in Fig. 4b. Its area is 

A~2 = bll~ + b212 + (b~12 + b211)] cos q~] + (I~12 + blb2)lsin ~o I (A1) 
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(a) 

12 

Fig. 4. (a) Configuration of two parallelepipeds which have only a single pair of principal 
axes parallel to one another. The shaded rectangles show the cross-sectional area formed 
by a plane cutting the bodies perpendicular to their line of tangency. (b) Locus of the 
second particle's center as it moves around the first particle, maintaining tangency and 
fixed relative orientation. 

A12 is twice the second virial coefficient of  a two-dimensional  hard-rectangle 
fluid. 

The volume v12 excluded by parallelepiped 1 to paralMepiped 2 is 

v12 = A~(wl  + w2) (A2) 

where w~ is the width (the third dimension) o f  particle i. Since v~2 = 2B~2(~o), 
Eqs. (A1) and (A2) lead directly to the second virial coefficient o f  the system 
whose orientations are restricted to those shown in Fig. 4a. 

A.2. Third Virial Coeff ic ient  of Rectangular Parallelepipeds 

When all principal axes o f  both  paralMepipeds are coincident in pairs 
(~o = 0), the integration along each axis is independent o f  those along the 
others and the third virial coefficient may  be expressed as 

Here 
B12a = �89 J12a(x)J12a(Y )J128(z) 

Jtea "=" l(~2a~) + i(la2z) + i(21a2) + i(2a12) + i(a~2a~ + i(a21a) 

I(kmn~) = f dt f du H(a m - t)H(am. - u)H(a.k - t -  u) 

=fo~ (A5) 

I;, 
H(a) = , a = 0 (A6) 

1.1, a > 0  

ak,, = �89 + a,~m) (A7) 

cl = min(a~m, ak~), cz = min(a~m, a,~ - t) (A8) 

(A3) 

(A4) 
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and akk (k = 1, 2, or 3) is the length (lk), breadth (bk) ,or width (w~) of the kth 
particle. The integrations in (A5) are trivial to perform; after simple but 
tedious algebraic transformations one gets 

I (km'~ = alcmamn - � 8 9  - S ~ H ( S m ~ )  - S2mnH(Smr,)] (A9) 
with 

Sk~ = �89 -- am,~) (A10) 

Substituting (A9) into (A4) yields 

J128 = azla22 + a22aa8 + asaall  (Al l )  
and therefore 

B~2a = ~-(h12 + 121a + 13h)(b~b2 + b2ba + b3b~)(wlw2 + w2wa + wawl) 

( A 1 2 )  

Consider now a single-component fluid of paraIMepipeds with dimen- 
sions L, B, and W (L >/ B t> W) and le t  each quantity l~, b~, and w~ in Eqs. 
(A1), (A2), and (A12) be equal to L, B, or W. There will then be six mutual 
orientations of the two particles and ten of three particles. Characterizing 
these orientations by the three Euler angles %/3, and 7 (~ and ~, specify rotation 
about the long axis L, and/3 about the short axis W) we represent the possible 
configurations and corresponding expressions for B~ and B~a shown in 
Table XIII. 

A P P E N D I X  C. REPRESENTATION OF B12 FOR C O N T I N U O U S  
ORIENTATIONS 

By requiring the m ~< 1, n ~< 1, k ~< 1 truncation of Eq. (76a) to recover 
exactly the six values of B2 listed in Table VIII, we obtain six coupled equa- 
tions for the b~,,k which can be solved to give 

b;oo = �89 + ~V2 ! , , - 3(bool + bzoo) 
' 1 t I bolo = ~Vl + �88 - ~(bool + b~oo) 

b;ol = �88 + �88 - �89 + bloo) (A13) 

b~lo + b~l  = (b~ol + b~oo) - V2 
t 1 t v 

b1~1 = �88 + V,2) - -z(bool + b~oo) 

where the V~ are given by Eqs. (81); b~o~ + b~oo is arbitrary. If  one puts 
b~ol + b~oo = �89 then the truncated equation (76a), with bm.~ given by 
(A13), coincides with Eq. (A2) for 2B~2, with absolute values of the trigono- 
metric functions replaced by their squared values. That is, for this choice of 
b~o~ + b~oo, Eq. (76a) becomes (80)-(82). 
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